Publikationen Prof. Dr. Yuanhua Feng
Semiparametric GARCH models with long memory applied to Value at Risk and Expected Shortfall
S. Letmathe, Y. Feng, A. Uhde, Journal of Risk 25 (n.d.).
Semiparametric GARCH models with long memory applied to Value at Risk and Expected Shortfall
S. Letmathe, Y. Feng, A. Uhde, Journal of Risk (n.d.).
The Shanghai-Hong Kong Stock Connect: An Application of the Semi-CGARCH and Semi-EGARCH
C. Peitz, Y. Feng, B.M. Gilroy, N. Stöckmann, Asian Economic and Financial Review 10 (2020) 427–438.
Further Development of the Double Conditional Smoothing for Nonparametric Surfaces Under a Lattice Spatial Model
B. Schäfer, Y. Feng, in: Book of Abstracts, 2018, p. 7.
Forecasting Non-Negative Financial Processes Using Different Parametric and Semi-Parametric ACD-Type Models
S. Forstinger, Y. Feng, C. Peitz, in: Book of Abstracts, 2018, p. 17.
A Box-Cox Semiparametric Multiplicative Error Model
X. Zhang, Y. Feng, in: Book of Abstracts, 2018, p. 19.
A general class of SemiGARCH models based on the Box-Cox transformation
X. Zhang, Y. Feng, C. Peitz, A General Class of SemiGARCH Models Based on the Box-Cox Transformation, 2017.
Alle Publikationen anzeigen
Themenvorschläge für Masterarbeiten
Master-Theses in Time Series Modeling and Forecasting, Financial Econometrics and Financial and Economic Data Science in SS 2025
Subareas and details
1. Subarea I: Advanced Time Series Forecasting
a) Modeling and Forecasting trend-stationery and scale-stationary non-negative short-memory time series with “smoots” and “forecast” under normality assumption and by bootstrap
b) Modeling and Forecasting trend-stationery and scale-stationary non-negative long-memory time series with “esemifar” and “forecast” under normality assumption
c) Modeling and Forecasting trend-stationery and scale-stationary non-negative long-memory time series with “esemifar” and bootstrap without normality assumption***
d) Semiparametric modeling and forecasting vector time series with long memory***
2. Subarea II: Modeling of trend-scale-stationary time series with volatility in errors
a) Definition, estimation and application of short-memory trend-scale-stationary time series
b) Definition, estimation and application of long-memory trend-scale-stationary time series
c) Definition, estimation, application of dual long memory dual trend time series models***
3. Subarea III: Parametric and semiparametric modeling of spatial time series
a) Definition, estimation, application of parametric short memory spatial time series models
b) Definition, estimation, application of parametric long memory spatial time series models
c) Definition, estimation, application of semiparametric spatial long memory time series***
4. Subarea IV: Semiparametric modeling economic time series or volatility by P-splines:
a) Smoothing economic time series with the (recent data-driven) P-splines smoother***
b) Modeling and forecasting volatility using the P-spline smoother applied to VaR/ES***
Remark 1. A Master Thesis by us usually requires the visit of M.184.5453 or at least M.184.4451. If you are visiting M.184.5453 or going to visit M.184.4451 in SS 2025, you need to indicate it.
Remark 2. Topics in Subarea I and a part of II are designed based on M.184.5453.
Remark 3. Topics in Subareas of a part of II, and in III and IV are designed based on both M.184.5453 and some of our current research results.
Remark 4. With *** marked topics are research-oriented ones at high-level of theory/methods.
Remark 5. The choice of further topics in basic time series analysis, Advanced Econometric or basic Data Science are possible, e.g. for students of Economic Engineering.
Remark 6. More advanced research-oriented topics on spatial GARCH, spatial long memory GARCH and spatial dual long memory models are possible. ***
Chinese Page
对外办公时间 (2014/2015 冬季学期)
星期一 11:15 - 12:15 (或预约)
(假期中均需预约)
秘书
Felicitas Wax
Room: Q4.107
Tel: +49.5251.60-5003
E-Mail: felicitas.wax@uni-paderborn.de
简历
教育背景: 北京师范大学数学系 (本科)
北京农业大学 (现中国农业大学) 经济管理学院 (硕士)
康斯坦茨大学 (德国) 统计学博士及德国大学教授资格
工作经历: 北京农业大学 (现中国农业大学) 经济管理学院
康斯坦茨大学数学与统计系及金融与计量经济研究中心
亨瑞瓦特大学 (英国) 精算与统计系
帕德博恩大学 (德国) 工商管理与经济学院 (2008-- )
主要课程 (详见教学网页)
统计学,计量经济,时间序列分析,金融计量经济,应用计量经济,实证经济研究中的高级定量方法,
计量经济及统计的最新进展
主要研究方向
金融计量经济,时间序列分析, 非参数及半参数回归, 半参数金融模型,实证经济研究,实证金融研究,
计算机统计学, 金融大数据分析
主要科研成果(详见文章及论著)
非参数回归的带宽选择 (双平滑,1998,link; 简化双平滑,2009, link; 双平滑循环代入,2009,link)
数据驱动的时间序列分解 (Berlin Method, 2000, 及其 循环代入算法,2013)
长记忆下的局部多项式 (理论,算法,2002,异方差, 2001,最忧收敛,2013 )
半参数分数自回归模型 (SEMIFAR, 2002, link 及其循环代入算法,2002)
半参数广义自回归条件异方差模型 (半参数 GARCH 模型=Semi-GARCH, 2004,link, 及其高频扩展,2008)
半参数分数自回归-广义自回归条件异方差模型=SEMIFAR-GARCH (2007, link)
指数型半参数分数自回归模型 (ESEMIFAR 或 Semi-FI-Log-ACD, 2014)
半参数自回归条件持续期模型 (半参数ACD模型=Semi-ACD, 2014,link,及其详细算法, 2013,pdf)
半参数不对称幂级数GARCH模型 (半参数APARCH模型=Semi-APARCH, 2013, pdf)
半参数GARCH模型族 (半参数EGARCH,半参数CGARCH等=Semi-EGARCH, Semi-CGARCH etc., 待发表)
高频金融数据空间模型 (spatial MCGARCH,2013 及 双重条件平滑,2015)
已实现核的数据驱动估计(data-driven estimation of realized kernels, 2015)
与国内大学联合培养的博士
郭志超 (中国农业大学, 2012), 现任教于北京工商大学经济学院
王江涛 (中南财经政法大学, 2014),现任教于华中师范大学经济与工商管理学院
部分学术活动
2013: 组织并主持弟19届欧洲统计学会的长记忆时间序列分析的分组会
2013: 在山东大学举办半参数金融时间序列模型专题讲座
2014: 在本校成功举办 "非参数与半参数异方差及相关性模型" 国际会议
教研组成员