Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Machine Learning for Prediction Based Stratification in Economic Experiments

On 11th December 2017 (1-2 pm), Tobias Aufenanger, scientific assistant at the chair of economics, in particular social politics, at the Friedrich-Alexander University Erlangen-Nuremberg, will give a presentation about "Machine Learning for Prediction Based Stratification in Economic Experiments". Afterwards Mr. Aufenanger will be available for questions and discussions. His presentation is part of


This paper proposes a way of using observational pretest data for the design of experiments. In particular, this paper trains a random forest on the pretest data and stratifies the allocation of treatments to experimental units on the predicted dependent variables. This approach reduces much of the arbitrariness involved in defining strata directly on the basis of covariates. A simulation on 300 random samples drawn from six data sets shows that this algorithm is extremely effective in reducing the variance of the estimation compared to random allocation and to traditional ways of stratification. On average, this stratification approach requires half the sample size to estimate the treatment effect with the same precision as complete randomization. In more than 80% of all samples the estimated variance of the treatment estimator is lower and the estimated statistical power is higher than for standard designs such as complete randomization, conventional stratification or Mahalanobis matching.

The University for the Information Society