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Abstract

In this paper new semiparametric GARCH models with long memory are introduced.

A multiplicative decomposition of the volatility into a conditional and unconditional

component is assumed. The estimation of the latter is carried out by means of a

data-driven local polynomial smoother. Recurring on the revised recommendations

by the Basel Committee to measure market risk in the banks’ trading books, these

new semiparametric GARCH models are applied to obtain rolling one-step ahead

forecasts for the Value at Risk (VaR) and Expected Shortfall (ES) for market risk

assets. Standard regulatory traffic light tests and a newly introduced traffic light test

for the ES are carried out for all models. In addition to that, model performance is

assessed via a recently introduced model selection criterion. The practical relevance

of our proposal is demonstrated by a comparative study. Our results indicate that

semiparametric long memory GARCH models are a meaningful substitute to their

conventional, parametric counterparts.
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1 Introduction

Induced by the global financial crisis of 2007, the Basel Committee on Banking Supervision

(BCBS) has published new recommendations for the measurement of market risk from the

banks’ trading books by means of the ”Fundamental Review of the Trading Book (FRTB)”

framework (Basel Committee on Banking Supervision, 2013). The review had become

necessary since the global financial crisis had clearly exposed the weaknesses of the VaR

(value at risk, Morgan, 1996) method, which is predominantly used by banks to measure

market risk. Thus, and according to the FRTB, the Basel Committee recommends to

replace the VaR method by the coherent ES (expected shortfall, Acerbi and Tasche, 2002)

measure. In addition, the committee proposes to employ the proven “traffic light tests” for

backtesting the model quality of the ES (Basel Committee on Banking Supervision, 1996;

Basel Committee on Banking Supervision, 2016). However, backtesting is much more

complex for ES than for VaR, since not only the number is relevant, but also the amount

by which the expected loss is exceeded. So far there is no consensus which model or

method is the most suitable for forecasting VaR and ES. Nevertheless, empirical studies

have revealed that long memory GARCH (LM-GARCH) models are very successful in

accurately forecasting the conditional volatility of asset returns and often outperform short

memory GARCH type models (see, among others, Giot and Laurent, 2003, Degiannakis*

(2004), Tang and Shieh, 2006, Grané and Veiga (2008), Härdle and Mungo (2008), Baillie

and Morana, 2009, Demiralay and Ulusoy, 2014, Aloui and Ben Hamida, 2015 and Royer,

2022).

Against this background, the paper at hand focuses on the introduction and application

of a new semiparametric long memory GARCH (Semi-LM-GARCH) model, which belongs

to a general class of non-stationary volatility models as outlined in Sucarrat (2019). The

most commonly known approaches for modelling non-constant conditional variances are

the autoregressive conditional heteroscedasticity (ARCH) model proposed by Engle (1982)

and its generalisation, the generalized ARCH (GARCH) model, introduced by Bollerslev

(1986). Those models and their extensions imply exponentially decaying autocorrelations

of the squared innovations and do not control for long memory in the conditional dy-

namics. However, Ding et al. (1993), Ding and Granger (1996), Andersen and Bollerslev

(1997), Andersen et al. (1999) and Cotter (2005), among others, found evidence for the
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presence of long memory in the empirical autocorrelations in absolute or squared ob-

servations of financial time series. Analogously to the extension of the ARIMA, i.e. the

fractional ARIMA (FARIMA) model introduced by Granger and Joyeux (1980), Baillie et

al. (1996) proposed the fractionally integrated GARCH (FIGARCH) model which proved

to be successful in modelling the long term dynamics in volatility of various financial

time series (see e.g. Bollerslev and Mikkelsen, 1996, Tse, 1998, Beine et al., 2002, and

Baillie and Morana, 2009. However, another branch of literature suggests that these long

term dynamics might partly stem from deterministic structural shifts in the unconditional

variance (see e.g. Lamoureux and Lastrapes, 1990 and Mikosch and Stărică, 2004). For

instance, Beran and Ocker (2001) revealed the presence of a non-constant deterministic

scale function for some volatility series by means of the semiparametric fractional autore-

gressive (SEMIFAR) model, introduced by Beran and Ocker (1999). Furthermore, Feng

(2004) found that conditional heteroskedasticity and change in volatility usually occur

simultaneously in financial return series. Under regular conditions a process with condi-

tional heteroskedasticity is covariance stationary, but a process with change in volatility is

at best locally stationary. This potentially non-stationary process can be transformed into

a weakly stationary process by eliminating the deterministic component from the original

process, as was illustrated by Feng (2004) and by Van Bellegem and Von Sachs (2004).

The authors assume that volatility is multiplicatively decomposed into a conditional and

unconditional component and that the latter changes slowly over time. They propose

to estimate the time varying unconditional variance by means of a kernel smoother of

the squared residuals. Engle and Rangel (2008) as well as Brownlees and Gallo (2010)

apply another multiplicative decomposition based on exponential quadratic and penalised

B-splines, respectively. Mazur and Pipień (2012) introduce the almost periodically corre-

lated (APC-) GARCH. In this model the scaling function is parameterized by means of

the Flexible Fourier Form by Gallant (1981, 1984). More recently, Amado and Teräsvirta

(2014) introduced the Time varying GARCH model under the same assumption (see also

Amado and Teräsvirta, 2008, 2013, 2017) and underline the empirical importance of con-

sidering deterministic changes in the unconditional variance of financial return series.

In analogy to Feng (2004) we introduce various semiparametric long memory GARCH

(Semi-LM-GARCH) models. We propose to estimate the time varying unconditional vari-

ance by means of an adapted version of the SEMIFAR algorithm (Beran and Feng, 2002a)

with a local polynomial estimator. Subsequently, the deterministic component is removed
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from the data and a LM-GARCH model is fitted to the approximately stationary resid-

uals. Practical performance is first illustrated by the application to daily return series of

22 major stock indices. Moreover, our proposal is applicable to model quantitative risk

measures. This is illustrated by calculating the one-step ahead out-of-sample forecasts of

the VaR and ES at the 99%- and 97.5% confidence level with a forecast horizon of approx-

imately one year, as required by the latest regulations proposed by the Basel committee

(see Basel Committee on Banking Supervision, 2017). A comprehensive comparison study

between conventional parametric LM-GARCH models and Semi-LM-GARCH models re-

veals that our proposals are an attractive alternative.

The paper is organized as follows. Section 2 recaps the most commonly known long

memory GARCH models as well as a fractionally integrated version of the Log-GARCH

(Geweke, 1986, Pantula, 1986, and Milhøj, 1987), the FI-Log-GARCH, which was recently

proposed by Feng et al. (2020). The proposed models are introduced in Section 3. In

Section 4 the semiparametric estimation of the deterministic component is illustrated, an

adaptation of the SEMIFAR algorithm is briefly described and the practical implemen-

tation of our proposals with regard to rolling forecasts is discussed. Employment of our

proposals to VaR and ES is explained in Section 5. Empirical results are presented in

Section 6. Section 7 concludes.

2 Modelling long memory in volatility

The existence of long memory in volatility was first discovered in the S&P 500 daily

closing index by Ding et al. (1993). Up to this time volatility models were assumed to

have an exponentially decaying correlation of volatility. In the following decade, more

researchers found evidence for the presence of long memory in volatility of financial asset

prices, including intraday and high-frequency stock returns (see e.g. Ding and Granger,

1996, Andersen and Bollerslev, 1997, Andersen et al., 1999 and Cotter, 2005, among

others). As a consequence, various LM-GARCH models were developed.
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2.1 GARCH models with long memory

In the short memory case, the autoregressive conditional heteroscedasticity (ARCH)

model proposed by Engle (1982) and its generalisation, the generalized ARCH (GARCH)

model, introduced by Bollerslev (1986), are well-known approaches for modelling non-

constant conditional variances. Let r∗t , t = 1, ..., n, denote the (log-) returns of a stock or

financial index with E(r∗t ) = µr∗ . A common representation of a GARCH (p, q) model is

given by

rt =
√
htεt,

ht = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjht−j
(1)

where rt = r∗t − µr∗ are the centralized returns, εt being identically independent dis-

tributed (i.i.d.) random variables with E(εt) = E(ε2t − 1) = 0, ht denotes the conditional

variances, ω > 0 and α1, . . . , αp, β1 . . . βq ≥ 0. Due to increasing evidence for volatility

series exhibiting long memory, an extension of the GARCH which captures this important

feature, namely the fractionally integrated GARCH model (FIGARCH) was proposed by

Baillie et al. (1996). Moreover, based on the exponential GARCH (EGARCH) proposed

by Nelson (1991), Bollerslev and Mikkelsen (1996) introduced the fractionally integrated

exponential GARCH (FIEGARCH), where the logarithm of the conditional variance is

modelled as a fractionally integrated process. The EGARCH and FIEGARCH account

for the so-called leverage effect which usually has short-term effects on the dependence

structure of the underlying process. Furthermore, Ding et al. (1993) proposed the so

called asymmetric power GARCH (APARCH) model. It controls for the power trans-

formation of the volatility process and the asymmetric absolute residuals in order to

avoid misspecification for non-normal data. The extension to the fractionally integrated

APARCH (FIAPARCH) was then proposed by Tse (1998) which combines the FIGARCH

with the APARCH. Another model that is capable of capturing persistence in volatility is

the ARCH(∞) model introduced by Robinson (1991) and further investigated by Giraitis

et al. (2000), Kazakevičius and Leipus (2002) as well as Douc et al. (2008). Moreover, in

a recent study, Royer (2022) proposed an ARCH(∞) extension of the APARCH that ac-

counts for conditional asymmetry in the presence of severe long memory. Its specification

is very general and nests the ARCH(∞) as well as the Threshold-ARCH(∞) (see Bardet

and Wintenberger, 2009).
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2.2 The FI-Log-GARCH model

Recently, Feng et al. (2020) proposed the FI-Log-GARCH. This model is an extension of

the independently introduced Log-GARCH model by Geweke (1986), Pantula (1986) and

Milhøj (1987) and represents a symmetric special case of the FIAPARCH for δ → 0. In

the following a brief derivation of the FI-Log-GARCH is given. Following Sucarrat et al.

(2016) and Francq and Sucarrat (2018), the Log-GARCH is defined by (1) and

lnht = ω +

p∑
i=1

αi ln r
2
t−i +

q∑
j=1

βj lnht−j. (2)

As for the EGARCH, no non-negativity constraints are needed. Define µlr2 = E(ln r2
t )

and ηt = ln ε2t − µlε2 , where µlε2 = E(ln ε21). Then following Francq and Sucarrat (2018)

model (2) can be represented as an ARMA(p∗, q) with p∗ = max(p, q):

φ(B)(ln r2
t − µlr2) = ψ(B)ηt, (3)

where B is the backshift operator, φ(B) = 1 −
∑p∗

i=1 αiB
i −

∑q
j=1 βjB

j and ψ(B) =

1 +
∑q

j=1 ψjB
j = 1 −

∑q
j=1 βjB

j. Analogously to the extension of the GARCH to the

FIGARCH, the extension of the Log-GARCH to the FI-Log-GARCH is straight forward

(see Baillie et al., 1996 and Feng et al., 2020). Factorising the left hand side of (3) with

the fractional differencing operator (1−B)d yields

φ(B)(1−B)d(ln r2
t − µlr2) = ψ(B)ηt. (4)

According to Hosking (1981b) and Granger and Joyeux (1980) the fractional differencing

operator can be defined as

(1−B)d =
∞∑
k=0

θk(d)Bk, (5)

where θk(d) = (−1)k Γ(d+1)
Γ(k+1)Γ(d−k+1)

, d ∈ (−0.5, 0.5) and Γ(·) denotes the Gamma func-

tion. In this model ln r2
t is assumed to follow a linear FARIMA (fractional autoregressive

integrated moving average) process as introduced by Hosking (1981a), and Granger and

Joyeux (1980). This model is well defined, if the innovation distribution satisfies some

regularity conditions, φ(z) and β(z) have no common factors with all roots lying outside

the unit circle and 0 < d < 1/2. The Log-GARCH is a special case with d = 0. Let

αd,i = ψ(B) − φ(B)(1 − B)d. Then the conditional volatility of the FI-Log-GARCH can
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be obtained by

lnht = ω +
∞∑
i=1

αd,i ln r
2
t−1 +

q∑
j=1

βj lnht−j, (6)

where ω is some constant. (6) is a long memory extension of (2) with hyperbolically

decaying coefficients αd,i. For a more detailed derivation and a comprehensive illustration

of the properties of the FI-Log-GARCH we refer the reader to Feng et al. (2020).

3 Semiparametric extension of the FI-Log-GARCH

In this section, we introduce a semiparametric extension of the FI-Log-GARCH, i.e. the

Semi-FI-Log-GARCH, which belongs to a general class of non-stationary volatility models

as outlined in Sucarrat (2019). We follow Feng (2004) as well as Van Bellegem and

Von Sachs (2004) and assume a multiplicative decomposition of ht into a conditional and

unconditional component under the assumption that the latter is slowly varying over time.

While Feng (2004) as well as Van Bellegem and Von Sachs (2004) propose to estimate

the unconditional variance by smoothing {r2
t } via a kernel estimator, we employ a local

polynomial smoother.

3.1 The Semi-FI-Log-GARCH model

In order to control for a time varying unconditional variance we add a non-negative smooth

deterministic function σ(τt) into (1) and obtain

rt =
√
σ(τt)htεt, (7)

where τt = (t − 0.5)/n denotes the rescaled time. Define ξ2
t = r2

t /σ(τt) = htε
2
t . {ξt} is

assumed to follow a FI-Log-GARCH process given by

ξt =
√
htεt and

lnht = α0 +
∞∑
i=1

αd,i ln ξ
2
t−i +

q∑
j=1

βj lnht−j.
(8)

Hence, (7) together with (8) represent a Semi-FI-Log-GARCH model. To ensure that our

model is well defined we assume that var (ξt) = 1 and E(ln ξ2
t ) exists which implies that

7



ξt 6= 0 almost surely. Furthermore, we have g(τt) = ln σ(τt) + µlξ2 and Zt = ln ξ2
t − µlξ2 =

lnht + ηt − (µlξ2 − µlε2), where µlξ2 = E(ln ξ2
t ) and ηt = ln ε2t − µlε2 . Let Yt = ln r2

t .

The log-transformation of r2
t admits an additive regression model with a determinsitic,

non-parametric function and is of the form

Yt = g(τt) + Zt, (9)

where Zt follows a FARIMA (p∗, q) given by

φ(B)(1−B)dZt = ψ(B)ηt. (10)

We see that the Semi-FI-Log-GARCH is equivalent to a SEMIFAR (semiparametric frac-

tional autoregressive) model (Beran and Feng, 2002c; Beran and Ocker, 1999) with an ad-

ditional MA-part and the restriction p ≥ q. Subsequently, well developed SEMIFAR algo-

rithms are applicable for estimating g(τt) and Zt. Moreover, we have σ̂(τt) = Ĉσ exp[ĝ(τt)]

and ĥt = Ĉh exp(Ẑt), where Cσ = exp(−µlξ2) and Ch = exp(µlξ2 − µlε2) can be estimated

consistently by the scale-adjusted returns and through standardizing the innovations un-

der the assumptions that E(ξ4
1) <∞ and var (ξt) = 1.

3.2 Other Semi-LM-GARCH models

The conditional volatility in (7) can also be modelled by means of any conventional LM-

GARCH under the assumption that there are strictly stationary solutions for all these

models. Hence, in the following we formulate three new semiparametric LM-GARCH

models. The Semi-FIGARCH is specified by

ht = ω∗ + {1− ψ−1(B)φ(B)(1−B)d}ξ2
t , (11)

where ω∗ = ωψ−1(B) and with all roots of φ(B) and ψ(B) outside the unit circle. More-

over, the Semi-FIEGARCH is given by

lnht = ω + φ−1(B)(1−B)−dα(B)g(εt−1), (12)

where α(B) = 1+
∑p

i=1 αiB
i and g(εt) = Θεt+γ[(|εt|−E|εt|)] is the news impact function

with Θ, γ ∈ R. And, subsequently, the Semi-FIAPARCH is defined by

hδt = ω + {1− ψ−1(B)φ(B)(1−B)d}(|ξt| − γiξt)δ, (13)
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where δ > 0, γi < |1| with i = 1, ..., p. δ is a parameter to be estimated and γi controls

for an asymmetric response of the volatility to positive and negative shocks. Please note

that for the FI-Log-GARCH the long memory parameter is not affected by a power- or

log-transformation (see Surgailis and Viano, 2002, and Lemma 2 in Feng et al. (2020).

However, this is yet to be proven for other LM-GARCH models. Nonetheless, estimation

of the deterministic component for models (11), (12) and (13) is carried out analogously

to the Semi-FI-Log-GARCH under the assumptions that {ξ2
t } is a log-linear process and

d is not affected by the log-transformation.

3.3 Related approaches

Several previous studies exist which employ a similar methodology to decompose ht and

estimate σ(τt). To begin with, Engle and Rangel (2008) as well as Brownlees and Gallo

(2010) apply another multiplicative decomposition based on exponential quadratic and

penalised B-splines, respectively. Mazur and Pipień (2012) propose to parametrize the

deterministic component by means of the Flexible Fourier Form by Gallant (1981, 1984).

Moreover, Amado and Teräsvirta (2008, 2013, 2014, 2017) introduce the Multiplicative-

Time-Varying GARCH model in which the deterministic component is modelled via gen-

eralised logistic transition functions. Furthermore, Engle et al. (2013) suggest the use of

mixed-data sampling (MIDAS) in order to decompose the volatility into a short-run and

a long-run component (MIDAS) and propose the GARCH-MIDAS model. And, more

recently, Zhang et al. (2017) introduces the Box-Cox Semi-GARCH model. The authors

suggest to estimate the deterministic scale function from the Box-Cox transformed series

|rt|λ instead of r2
t .

Overall, the paper at hand contributes to the literature since the majority of the afore-

mentioned studies do not address the persistence in the stochastic component, i.e. ht.

In addition, we propose to estimate the deterministic component, i.e. σ(τt), via a local

polynomial smoother within the scope of an adapted version of the SEMIFAR algorithm

(see Beran and Feng, 2002a and Letmathe et al., 2021 for the original and adapted version

of the algorithm, respectively).
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4 Estimation and practical implementation

The SEMIFAR model introduced by Beran and Feng (2002c) is capable of simultaneously

identifying a deterministic scale as well as short- and long-range dependence. The esti-

mation processes in two parts, namely the nonparametric estimation of the deterministic

component and the parametric estimation of the parameters that determine short- and

long-range dependence as well as integer differencing. Furthermore, Beran et al. (2015)

proposed the exponential semiparametric FARIMA (ESEMIFAR) model under the as-

sumption that {ξt} is log-linear. As it was already shown that a FI-LOG-GARCH can be

formalised as a FARIMA (p∗, q) given by (4), {ξt} is indeed a log-linear process. Subse-

quently, this parametrization allows that (4) or (10) can be estimated by means of any

standard R package for FARIMA models and that well developed SEMIFAR algorithms

are applicable for estimating the deterministic component g(τt) as well.

4.1 Local polynomial smoothing

In this paper a local polynomial estimator for g(ν)(τt), the ν− th derivative, is considered

(see e.g. Beran and Feng, 2002a, Beran and Feng, 2002b, Beran and Feng, 2002c, and

Beran et al., 2013). Under the assumption that g is at least (l + 1)-times differentiable

at a point t0, g(τt) can be approximated by a local polynomial of order l for τt in a

neighbourhood of τ0. The approximation is given by

g(τt) = g(τ0) + g(1)(τ0)(τt − τ0) + ...+ g(l)(τ0)(τt − τ0)l/l! +Rl, (14)

where Rl denotes a remainder term. Following Gasser and Müller (1979), we define the

weight function to be a kernel of order two with compact support [−1, 1] having the

polynomial form K(x) =
∑r

i=0 aix
2i, for (|x| ≤ 1),where K(x) = 0 if |x| > 1, r ∈

(0, 1, 2, ...) and ai are such that
∫ 1

−1
K(x)dx = 1 holds. ĝ(ν) (ν ≤ l) can now be obtained

by solving the locally weighted least squares problem

Q =
t∑
i=1

[
Yt −

l∑
j=0

βj(τi − τ0)j

]2

K
(τi − τ0

b

)
, (15)

where b denotes the bandwidth and K[(τi − τ0)/b] are the weights ensuring that only

observations in the neighbourhood of τ0 are used. Consider the case where l − ν is odd.
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Define m = l + 1, then we have m ≥ ν + 2 and m − ν is even. A point τ is said to be

in the interior for each τt ∈ [b, 1 − b], at the left boundary if τt ∈ [0, b) and at the right

boundary if τt ∈ (1 − b, 1]. Following Beran and Feng (2002b) a common definition for

an interior point is τ = cb with c = 1 and for a boundary point we have c ∈ [0, 1). Beran

and Feng (2002a) and Beran and Feng (2002b) obtained asymptotic expressions for the

bias, variance and mean integrated squared error (MISE) of ĝ. According to Theorem 1

in Beran and Feng (2002b) the bias and variance are given by

E(ĝ(ν) − g(ν)) = bm−ν
g(m)(τ)β(ν,m,c)

m!
o(b(m−ν)), (16)

and

(nb)1−2µ(τb2νvar [ĝ(ν)] = V (c) + o(1). (17)

For an interior point Beran and Feng, 2002b presented a simple explicit expression of

V (1), which is given by V (1) = 2πcf
∫ 1

−1
K2

(ν,m)(µ(τ)dx, for d = 0 and for d > 0 we have

V (1) = 2cfΓ(1 − 2d) sin(πd)
∫ 1

−1

∫ 1

−1
K(ν,m)(x)K(ν,m)(y)|x − y|2d−1dxdy, where cf stands

for the spectral density of the ARMA part of (10) at frequency zero. In the case of

antipersistence, i.e. for d < 0 the formula for V (1) is quite complex and is omitted.

Moreover, Beran and Feng (2002b) derived an explicit expression for the asymptotic

MISE (AMISE) in order to determine the asymptotically optimal bandwidth which can

be obtained by

bopt = Coptn
(2d−1)/(2m+1−2d), (18)

with

Copt =

(
[m!]2

2(m− ν)

(2ν + 1− 2d)

β2

(db − cb)V (1)

I[g(m)]

)1/(2m+1−2d)

, (19)

where I(g(m)) =
∫ db
cb

[gm(τ)]dτ with 0 ≤ cb < db ≤ 1 being small positive constants in

order to control for the boundary effect and β =
∫ 1

−1
xmK(x)dx. Based on these results

Beran and Feng (2002a) proposed two iterative plug-in algorithms. In this paper we only

consider a strongly adapted version of Algorithm B which is presented in the following.

4.2 A Plug-In Algorithm for SEMIFARIMA models

Based on the iterative plug-in (IPI) algorithms for SEMIFAR models introduced by Beran

and Feng (2002a), Letmathe et al. (2021) developed an IPI-procedure for SEMIFARIMA
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models by translating and adapting the main features of the IPI-algorithm for SEMIFAR

models from the programming language S to R, in order to enhance its overall accessibility

and applicability. The algorithm processes as follows:

i) In the first iteration start with an initial bandwidth h0 set beforehand and select p

and q denoting the AR- and MA-order, respectively.

ii) Estimate g from Yt employing hj−1 and calculate the residuals Z̃t = Yt − ĝ(τt).

Estimate d and V by fitting a FARIMA (with predefined AR- and MA-order in

Step i) to Z̃t.

iii) Set bj = (bj−1)α, where α denotes an inflation factor. Estimate g(m) with bj and a

local polynomial of order l∗ = l + 2. Now, we obtain

bj =

(
[m!]2

2m

(1− 2d̂)

β2

(db − cb)V̂ (1)

I[ĝ(m)]

)1/(2m+1−2d̂)

· n(2d̂−1)/(2m+1−2d̂). (20)

iv) Repeat steps ii) and iii) until convergence or a given number of iterations has been

reached and set b̂opt = bj.

After estimating g with b̂opt the residuals Z̃t or ξ̂t can be further analysed by means of the

FI-Log-GARCH or any other LM-GARCH model. Please note that the results presented

in Beran and Feng (2002a,b,c), Beran and Ocker (1999, 2001), and Beran et al. (2013)

remain valid for the IPI for SEMIFARIMA models. For a more detailed documentation

of the procedure, changes and adaptions of this IPI-algorithm we refer the reader to Feng

et al. (2021) and Letmathe et al. (2021).

4.3 Rolling one-step ahead forecasts

Volatility estimation for the conventional semi-parametric LM-GARCH models is carried

out by means of the statistical software OxMetrics and the related G@RCH 8.0 package.

For the Semi-FI-Log-GARCH we propose to use the free software R (R Core Team, 2021).

There are various possibilities for estimating a FARIMA with R. In this paper we utilise

the fracdiff() function from the package having the same name. The volatility is then
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derived from the estimates of the conditional means. The latter can be obtained via a

truncated AR(∞) representation of the fitted model which is given by

Ẑt =
L∑
i=1

λ̂iZ̃t−i, Z̃t = 0 for t < i, (21)

where L denotes the number of lags, λ̂i are the coefficients of λ̂(B) = (1−B)d̂φ̂(B)β̂−1(B) =

1 −
∑L

i=1 λ̂iB
i with i = 1, .., L and Z̃t = Yt − ĝ(τt). We follow the three step-estimation

procedure to obtain the total volatility as proposed by Sucarrat (2019) and described

in Section 3.3., with minor adjustments. To begin with, in this paper the deterministic

component g(τt) in (9) is estimated non-parametrically via a data-driven local polynomial

smoother.

i) Estimate g(τt) in (9) by means of the IPI for SEMIFARIMA models and calculate

the residuals Z̃t = Yt − ĝ(τt).

ii) Fit a FARIMA(p∗, q) model as in (10) to Z̃t and compute Ẑt with (21).

iii) The total volatilities are then obtained by

ζ̂t =

√
Ĉσ exp[ĝ(τt)/2]

√
Ĉh exp[Ẑt/2]

=

√
σ̂(τt)ĥt.

(22)

Analogously, the conditional volatility can be calculated by replacing (22) with
√
ĥt =√

Ĉh exp(Ẑt/2). Note in this context the parameters Cσ and Ch are equivalently estimated

as in Sucarrat (2019) (see also Sucarrat et al., 2016 and Escribano and Sucarrat, 2018). We

yield Ĉσ = var [exp(Z̃t/2)] = exp(−µ̂lξ2) and Ĉh = var [ξ̂t/ exp(Ẑt/2)] = exp(µ̂lξ2 − µ̂lε2),
where µ̂lξ2 = − ln[ 1

n

∑n
i=1 exp(Z̃t)] and µ̂lε2 = − ln[ 1

n

∑n
i=1 exp(η̂t)] are smearing estimators

(see Duan, 1983) of E(ln ξ2
t ) and E(ln ε2t ), respectively. Further note that calculating the

total volatilities in step iii) only requires an estimate of µlε2 since ĈσĈh = exp(−µ̂lε2).
Moreover, the rolling one-day forecasts are given by

Ẑn+k =
L∑
i=1

λ̂iZ̃n+k−i, (23)

where k = 1, ..., K, with K being the number of out-of-sample observations. We propose

to extrapolate the last estimate of the deterministic component g(τt) for the in-sample as
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a forecast for the unconditional standard deviations for the out-of-sample period. That

means Z̃n+k−i = Yt − ĝ(τt), if n + k − i ≤ n and Z̃n+k−i = Yn+k−i − ĝ(τn), otherwise.

Rolling one-day forecasts for the total volatility can then be obtained by plugging Ẑn+k

and σ̂(τn) into (22).

5 Application to VaR and ES

It has been already shown that the elimination of the deterministic component from the

data can improve the estimation of quantitative risk measures (see e.g. Peitz, 2016, and

Feng, forthcoming). However, GARCH and Semi-GARCH models lack the possibility

of an underlying long memory structure in the conditional dynamics of daily returns.

Consequently, the employment of Semi-LM-GARCH models can further improve the es-

timation quality of quantitative risk measures. Our approach proceeds as follows. A

Semi-LM-GARCH model is fitted to an in-sample return series with nin = n−K, trading

days, where K = 250 denotes the number of trading days of one year. Then the out-

of-sample one-step ahead forecasts of the VaR and ES with a forecast horizon of K are

being calculated with confidence levels of αV = 99% for VaR and αE = 97.5% for ES,

as proposed by the Basel Committee (Basel Committee on Banking Supervision, 2016,

Basel Committee on Banking Supervision, 2017).

5.1 One-day ahead forecasts of VaR and ES

Please note that we only consider the conditional t-distribution with degree of freedom

ν > 2. For simplicity we propose to use the last estimate of σ(τt) as the forecast for

the unconditional standard deviations for the out-of-sample period such that ζ̂nin+k =√
σ̂(τnin)ĥnin+k. Then we have for the one-day rolling forecasts of VaR

V̂aRnin+k(α) = −r̄ + ζ̂nin+kF
−1
ν̂ (α)

√
(ν̂ − 2)/ν̂, (24)

where k = 1, ..., K and Fν denotes the cumulative distribution function of a t-distribution

with variance ν/(ν − 2), ν̂ is an estimate of the degrees of freedom ν and r̄ is the sample

mean of the in-sample returns. The one-day rolling forecasts of the ES are given by

ESnin+k(α) = −r̄ + ζ̂nin+kESε,α, (25)
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where ÊSε(α) is the ES of a standardized t-distribution with unit variance. According to

Eq. (2.25) in McNeil et al. (2015) we have, for ν > 2,

ESε(α) =
fν [F

−1
ν (α)]

1− α
ν + [F−1

ν (α)]2

ν − 1

√
ν − 2

ν
, (26)

where fν is the density function of a t distribution. It can be shown that under the con-

ditional t-distribution we have ESε(α) =̂ VaR(α∗), where α∗(ν) = Fν [ESε(α)
√
ν/(ν − 2)].

For α = 0.975 we have α∗ being marginally larger but almost equal to 0.99. Consequently,

ÊS(0.975) is slightly larger than V̂aR(0.99). For conventional models ĥnin+k can be ob-

tained by means of OxMetrics, whereas for the Semi-FI-Log-GARCH ĥnin+k can directly

be calculated with (23) where the coefficients can be obtained by means of any statistical

programming language capable of estimating FARIMA models.

5.2 Backtesting VaR and ES

In this paper we propose carrying out a traffic light test for the VaR as stipulated by

the Basel Committee on Banking Supervision (2016), which is based on the number of

violations, i.e. where the losses exceed VaR estimates. Let

Inin+k =

1, if − rnin+k > V̂aRnin+k(α)

0, otherwise,
(27)

be an empirical hit sequence. Then the number of violations {Inin+k(α) = 1} will be

denoted by N1 at α = 97.5% and N2 at α = 99%. In line with the Basel Committee on

Banking Supervision (2016) the green zone for VaR at α = 97.5% is set to 0 ≤ N1 ≤ 10

and for VaR at α = 99% it is stipulated to 0 ≤ N2 ≤ 4. Then we have µ1 = E(N1) = 6.25

and µ2 = E(N2) = 2.5. Furthermore, we adapt the idea of Costanzino and Curran (2018)

for backtesting ES. Define

ε̂∗nin+k = −(rnin+k − r̄)/ζ̂nin+k ∗
√
ν/(ν − 2). (28)

In order to satisfy the conditions required by Eq. (14) in Costanzino and Curran (2018)

it is assumed that ε∗n+k are i.i.d. t-distributed random variables. Moreover, we define

wnin+k =

1−
1−Fν(ε∗nin+k)

1−α , if Inin+k = 1,

0, otherwise.
(29)
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Then the test statistic for the ES is a weighted sum of the negative returns that exceed

V̂aRnin+k(α) and is given by

TES =
K∑
k=1

wnin+k. (30)

Please note that according to Costanzino and Curran (2015), (TES−µT )/
√
K is asymptoti-

cally ∼ N(µT , σ
2
t ) normally distributed with µT = (1−α)K/2 and σ2

T = (1−α)(1+3α)/12.

For α = 0.975 and K = 250, Costanzino and Curran (2018) approximated the asymptotic

boundary of the green zone for TES (with a cumulative probability till 95%) with 5.48.

Moreover, the authors derived a finite-sample distribution for TES and obtained a finite

sample boundary for the green zone of 5.70. In the following it will be illustrated that

this new traffic light approach works very well in practice. Subsequently, we will solely

focus on backtesting ES based on TES. A model is considered to pass our backtest if N1,

N2 and TES are all situated in the green zone. The best model is then identified by means

of a newly developed selection criterion introduced by Feng et al. (2020) which is defined

by

WAD = |N1 − µ1|/µ1 + |N2 − µ2|/µ2 + |TES − µT |/µT . (31)

An advantage of using the WAD (weighted absolute deviation) criterion instead of con-

ventional loss functions (see e.g. Sarma et al., 2003) is that the WAD-score of a model

usually does not contradict with its corresponding backtest result. The larger the quan-

tities N1, N2 and TES are, the larger the WAD is. By contrast, the so called firm’s loss

function becomes smaller the larger N1, N2 and TES are.

6 Empirical results

We fit the Semi-FI-Log-GARCH (SFIL), Semi-FIGARCH (SFIG), Semi-FIEGARCH (SFIE),

Semi-FIAPARCH (SFIA) and their parametric equivalents (FIL, FIG, FIE and FIA) with

respect to 22 return series of major stock indices over the period from January 1999 to

December 2019. A time span of 20 years is sufficiently large and includes all relevant

financial crise (and especially the global financial market crisis from 2007) with possible

long term volatility dynamics. Consequently, the implementation of long memory models

particularly for forecasting VaR and ES is justified and consistent. Historical return series

of major stocks indices from Asia, Europe and America are considered in order to evaluate
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the performance of our proposals in different world markets. We employ the following

stock indices: AEX Index (AEX), ATHEX Comp. (ATH), Austrian Trades Index (ATX),

CAC 40 (CAC), S&P/TSX Composite (CAD), DAX 30 (DAX), Dow Jones Industrial

(DJI), EURO STOXX 50 (EST), FTSE 100 (FTS), Ireland SE (ISQ), Hang Seng (HSI),

Korea SE Comp. (KOR), Madrid SE General (MAD), Mexico IPC (MEX), NASDAQ

Comp. (NSQ), Nikkei 225 (NIK), NYSE (NYS), OMX Stockholm (OMX), Portugal PSI

General (PSI), Russel 2000 (RUS), Standard and Poor 500 (S&P) and Swiss Market

(SWI). We split the data into training (in-sample) and test-sample (out-of-sample). The

training set contains N −K observations, with N being the number of total observations

and K = 250 days for the test-sample. Initially, local polynomial trend estimation by

means of the IPI for SEMIFARIMA models, which is introduced in section 4.2, is ap-

plied to the training data with regard to the semiparametric models. Subsequently,the

parametric parts of the models are fitted to the trend-adjusted return series in order to

calculate the one-day rolling forecasts for the test-samples. The Semi-FI-Log-GARCH

is fitted by using the R package fracdiff and the rolling forecasts are manually calcu-

lated according to equation (23). The parametric components of the other models and

the rolling forecasts are fitted and obtained by means of the G@RCH 8.0 package which is

implemented in OxMetrics. All models are fitted with order (1, d, 1) and are tested at

coverage probabilities 97.5% and 99% under conditional normal- and t-distribution, as

required by the Basel Committee on Banking Supervision (2016).1

6.1 Fitted model parameters

The estimated parameters φ̂, ψ̂, the long memory parameter d̂ and the degrees of freedom

ν̂ for all semi-parametric and parametric models are shown in Tables 3 and 4 2. For the

SFIE and FIE, sign- and magnitude effects are additionally shown and denoted by θ̂1 and

θ̂2. Finally, γ̂ and δ̂ represent the leverage effect and transformation parameter of SFIA

and FIA, respectively. As shown, φ̂ and ψ̂ for SFIG, SFIA and SFIL are comparable

in terms of their range of values. However, d̂ of SFIG is usually larger and shows values

larger than 0.5. The estimated parameters for SFIE deviate substantially. For this model,

1We do not present results from tests assuming a conditional normal distribution, but provide them

on request.
2Standard errors are omitted to save space but are available upon request.
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d̂ is negative and the absolute values of φ̂ and ψ̂ are clearly larger than the corresponding

estimates for the other semi-parametric models in most cases. Moreover it is shown, that

d̂ exhibits smaller values in the semi-parametric models as compared to the parametric

counterparts (see Table 6)3. This is due to the fact, that the deterministic component is

removed from the original process before the stochastic part is further analysed by means

of a parametric model. As a consequence, if an underlying deterministic scale function

is ignored, it could be falsely captured as persistence or short-term dependence in the

data. This can lead to unstable volatility predictions, which in turn translates to risk

measures. A significant smaller d̂ can be observed for all SFIL models and surprisingly,

the long memory parameter is negative for all SFIE models although it is above 0.5 in

most cases for all FIE models (see Tables 3, 4 and 6). The fitted FIE models deliver

surprising results in some cases. In particular with regard to the AEX and HSI series, it

seems that the FIE extremely underestimates (overestimates) the AR component, while

these obviously biased estimates are somewhat corrected by the SFIE. In most of the

cases, it is not possible to estimate SFIA or FIA models as the estimation algorithm is

not converging, which might be caused by the in-sample size (although being relatively

large) still being too small.4 Nevertheless, the estimated model parameters of the SFIL,

SFIG, FIL and FIG are robust throughout all stock indices.

6.2 Backtesting results

The test statistics, N1, N2, TES and the WAD values for all semi-parametric and para-

metric models are listed in Table 1 and 2, respectively. A model is considered as having

passed the traffic light test if its quantities N1, N2 and TES are all within their green

zones. Among those models, the one with a minimal WAD value is determined to be the

most suitable or accurate model in terms of predicting VaR and ES. Here, NES denotes

the amount of how many times the out-of-sample losses exceeded the ES. However, this

statistic is only provided for further information and is not considered in the traffic light

test. We have NES ≤ N2. The majority of models pass the traffic light test. In fact, only

3All estimates are statistically significant at conventional confidence levels.
4During our research it has been found that increasing the in-sample up to 30 years or more resulted

in a more stable behaviour of the FIAPARCH model. Estimation results for the FIAPARCH of major

stock indices, namely S&P, DJI, NSQ, RUS, DAX, EST, NIK, and FTS, are available upon request.
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in case of two return series, namely DAX and EST, there is no suitable model. Overall,

our results indicate that taking into account a potential underlying deterministic scale

function could be crucial for passing the traffic light test. This becomes obvious in par-

ticular for the FIG and SFIG. As illustrated in Tables 1 and 2, the FIG for DJI, CAC,

HSI, KOR, NYS and OMX do not pass the traffic-light test whereas the SFIG models for

the same series do. The same is true for the FIE and SFIE for DJI, NSQ, CAC, NYS and

OMX as well as for the FIL and SFIL for S&P and DJI.

Figure 1 illustrates the one-step rolling forecasts of the VaR at 97.5% and 99% for

the DJI series. The brown and red dashed line indicate the VaR at 97.5% and 99%,

respectively. The corresponding breaches are exemplified by the coloured circles and

triangles. Apparently, the parametric models underestimate VaR at 99% indicated by the

fact that all three models are located in the yellow zone with N2 = 6 for FIG and FIE

and N2 = 5 for the FIL (see Table 2). In contrast, when considering a non-parametric

trend in the data, the number of breaches are reduced to N2 = 1 for SFIG and SFIE and

N2 = 3 for the SFIL (see Figure 1 and Table 1). Unfortunately, in most cases a FIA or

SFIA could not be fitted which might be due to the fact that the in-sample is too small.

Moreover, it is observed that TES < 5.70 is empirically implied if both N1 and N2 are

located within their green zones. Nonetheless, we observed some cases, where N2 is in

its yellow zones, but TES < 5.70 is still satisfied. However, if both quantities are clearly

settled in their yellow zones, TES will also be in the same zone, which indicates that TES

is a useful statistic for backtesting the ES.

Furthermore, the proposed WAD model selection criterion measures the overall fore-

casting quality of a fitted model. An overview of the WAD values for all models across

all series is given in Table 5. As shown, the FIG has the lowest WAD for NSQ, ATX

and ISQ whereas the SFIG performs best for S&P, DAX, EST, AEX, CAC, NYS and

OMX . The FIE is superior for CAD, MAD as well as SWI while the SFIE could not

outperform the other models. The FIA performs best for MEX as well as PSI while the

SFIA performs best for HSI. The FIL exhibits minimum WAD values for NIK as well as

RUS while the SFIL shows minimum WAD values for DAX, FTS, DJI, ATH and KOR.

In total, 12 semi-parametric models and 10 parametric models have a minimum WAD.

However, the models for DAX and EST did not pass the traffic light test (see Tables 1

and 2).
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Overall, our results show that Semi-LM-GARCH models, and particularly the SFIG and

SFIL, provide a convincing alternative to conventional parametric models when measuring

market risk. Especially, if a parametric model does not perform well it is worthwhile to

check whether a semi-parametric model might deliver better results.

7 Conclusion

The paper at hand introduces different classes of Semi-LM-GARCH models, which are

able to improve the simultaneous modelling of conditional heteroskedasticity and a slowly

changing unconditional variance. We employ a SEMIFARIMA model with a local poly-

nomial smoother, in order to estimate the deterministic component. Bandwidth selection

is carried out by means of the SEMIFARIMA-algorithm, which was recently translated

from the programming language S to R by Letmathe et al. (2021).

We employ our Semi-LM-GARCH models for an out-of-sample forecasting of VaR and

ES. The performance of our proposals is assessed via traffic light tests for both risk

measures. In addition to that, a recently introduced model selection criterion, the WAD,

is applied. Our results indicate that Semi-LM-GARCH approaches are a meaningful

substitute of parametric LM-GARCH models. Against this background, the models and

results at hand may help banking supervisors as well as banks to further improve the

ES measure and the processes for backtesting it. Furthermore, the performance of each

model is dependent on the market. Therefore, it is advisable for both, risk managers and

regulators, to constantly monitor and benchmark a variety of models.

A comprehensive comparative study of our proposals and conventional methods, e.g.

historical simulation, will be conducted in future research. Moreover, the accuracy of

VaR and ES forecasting might be even further improved by extending our proposals

with conditional distributions that allow for modelling skewness (see Iqbal et al., 2020).

However, to the best of our knowledge closed-form expressions of asymmetric, fat tailed

distributions for calculating the ES have only been partially established yet. Alternatively,

one might bootstrap the empirical distribution function of the observed return series or

estimate VaR and ES based on the empirical quantiles of the residuals (see El Ghourabi

et al. (2016) and Francq and Zaköıan, 2015 for ideas along these lines).
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Table 5: WAD-values for all models. Bold printed numbers are the models with a mini-

mum WAD-value.

Series
Model

FIG SFIG FIE SFIE FIA SFIA FIL SFIL

S&P 1.17 0.38 2.05 0.42 - - 1.37 0.39

DAX 2.34 (1.65) 2.17 1.83 - - 2.17 (1.65)

EST 3.58 (3.20) 3.51 3.59 - - 3.27 3.76

NIK 1.56 0.49 1.01 1.67 0.51 1.60 0.46 1.28

FTS 1.33 1.71 1.30 1.18 - - 0.44 0.36

RUS 0.94 0.41 1.14 0.89 - - 0.38 1.16

DJI 2.54 0.80 2.53 1.31 - - 1.69 0.62

NSQ 0.44 0.64 1.48 0.88 - - 0.56 1.08

AEX 0.50 0.37 0.89 0.63 - - 0.56 0.60

ATH 1.05 0.97 1.05 1.01 1.07 1.02 1.68 0.68

ATX 1.39 2.43 2.21 2.78 2.03 2.75 2.01 2.74

CAC 2.17 0.44 2.21 0.96 - - 1.35 0.51

CAD 0.99 1.96 0.57 2.70 0.94 2.67 2.24 2.75

HSI 2.12 1.23 0.83 0.87 1.07 0.62 1.43 0.89

ISQ 0.60 2.52 1.15 3.00 0.91 3.00 1.78 3.00

KOR 4.20 0.68 1.51 0.44 3.32 - 1.04 0.35

MAD 0.91 0.67 0.40 0.77 - - 0.81 0.64

MEX 0.52 2.61 0.33 2.73 0.27 2.77 0.44 2.80

NYS 2.02 0.86 1.81 0.91 - - 0.95 1.17

OMX 2.64 0.60 2.63 0.73 1.29 - 1.60 1.96

PSI 0.43 0.47 0.59 0.76 0.38 0.76 1.37 1.76

SWI 0.88 0.57 0.48 1.27 - - 2.00 2.54

min(WAD) 3 5+(2) 3 0 2 1 2 4+(1)
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Table 6: Estimated long memory parameters for all models.

Series
Model

FIG SFIG FIE SFIE FIA SFIA FIL SFIL

S&P 0.581 0.543 0.597 -0.222 - - 0.406 0.250

DAX 0.580 0.405 0.621 -0.178 - - 0.421 0.252

EST 0.549 0.365 0.615 -0.184 - - 0.372 0.196

NIK 0.467 0.325 0.577 -0.311 0.391 0.294 0.310 0.204

FTS 0.522 0.404 0.591 0.361 - - 0.349 0.180

RUS 0.495 0.366 0.590 -0.199 - - 0.371 0.219

DWJ 0.628 0.567 0.602 -0.175 - - 0.408 0.278

NSQ 0.542 0.404 0.626 0.270 - - 0.432 0.237

AEX 0.569 0.427 0.765 -0.214 - - 0.392 0.215

ATH 0.421 0.280 0.550 0.160 0.412 0.341 0.282 0.157

ATX 0.388 0.294 0.620 -0.309 0.312 0.261 0.378 0.189

CAC 0.548 0.353 0.622 -0.129 - - 0.370 0.214

CAD 0.582 0.373 0.612 -0.169 0.440 0.288 0.434 0.229

HSI 0.554 0.350 0.680 -0.095 0.484 0.285 0.436 0.227

ISQ 0.386 0.221 0.613 -0.154 0.348 0.242 0.343 0.138

KOR 0.444 0.293 0.646 -0.254 0.318 - 0.417 0.167

MAD 0.486 0.342 0.506 -0.220 - - 0.400 0.232

MEX 0.486 0.362 0.684 -0.215 0.404 0.329 0.398 0.254

NYA 0.561 0.483 0.610 -0.186 - - 0.391 0.239

OMX 0.518 0.316 0.651 0.284 1.155 - 0.328 0.138

PSI 0.413 0.352 0.524 -0.248 0.325 0.300 0.311 0.117

SWI 0.573 0.506 0.413 -0.072 - - 0.341 0.232
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