Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

|

Paper on "Repurposing Electric Vehicle Batteries" published in International Top Journal

Der Artikel über Design und Evaluation eines modellgetriebenen Entscheidungsunterstützungssystems für die Umwidmung von Elektrofahrzeugbatterien wurde im European Journal of Information Systems (EJIS) veröffentlicht. EJIS ist eine der sechs sogenannten Top-Basket-Zeitschriften der Information Systems (IS) Disziplin. Das Paper berichtet, wie ein Informationssystem entworfen und ausgewertet wurde, das Entscheidungsträgern zu erkennen hilft, ob und wie Batterien für Elektrofahrzeuge in anderen Szenarien wiederverwendet und verwendet werden könnten, nachdem sie aufgrund einer Leistungsminderung aus einem Elektrofahrzeug entfernt wurden.

Der Artikel ist als Online-Publikation abrufbar unter
https://link.springer.com/article/10.1057%2Fs41303-017-0044-3

Abstract:
The diffusion of electric vehicles suffers from immature and expensive battery technologies. Repurposing electric vehicle batteries for second-life application scenarios may lower the vehicles’ total costs of ownership and increases their ecologic sustainability. However, identifying the best – or even a feasible – scenario for which to repurpose a battery is a complex and unresolved decision problem. In this exaptation research, we set out to design, implement, and evaluate the first decision support system that aids decision-makers in the automobile industry with repurposing electric vehicle batteries. The exaptation is done by classifying decisions on repurposing products as bipartite matching problems and designing two binary integer linear programs that identify (a) all technical feasible assignments and (b) optimal assignments of products and scenarios. Based on an empirical study and expert interviews, we parameterize both binary integer linear programs for repurposing electric vehicle batteries. In a field experiment, we show that our decision support system considerably increases the decision quality in terms of hit rate, miss rate, precision, fallout, and accuracy. While practitioners can use the implemented decision support system when repurposing electric vehicle batteries, other researchers can build on our results to design decision support systems for repurposing further products.

Citation:
Klör, B., Monhof, M., Beverungen, D., & Bräuer, S. (2017). Design and Evaluation of a Model-Driven Decision Support System for Repurposing Electric Vehicle Batteries. European Journal of Information Systems (EJIS).

Die Universität der Informationsgesellschaft